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Scale Factor, Expansion Rate, ETC

2
Line element: ds® = dt* — R(t)? ( AP r2d§22>
1 — kr?
Scale Factor Sign of k determines
the curvature of the
Redshift, z =1/R - 1 universe.

k=0 is a flat universe.

Expansion Rate: H = R/R

Acceleration: R/R
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The Cosmological Timeline
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CMB Observations : WMAP
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Supernova Ia observations

Measure apparent luminosity of a standard candle: Supernova Ia.
If we know the source luminosity, then we have the distance
to the source.

£(measured) = £(source)

47 D2

For each source, we have a redshift.
M(observed) = A(source) x (1+2z)

Given a cosmology, D(z) is uniquely determined.

!

Measured D(z) - Universe is Accelerating!
- Presence of Dark Energy.
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What is Dark Energy?

Qualitatively speaking ...
= Dark energy does not have any SM interactions.
= [t does not cluster strongly (if at all).

= [t causes the acceleration of the universe; dark energy density
changes slowly (if at all) as the universe expands.

Acceleration occurs when

Present data favor an accelerating universe.
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Evidence for Dark Energy: Accelerating Universe

Supernova Cosmology Project
Perlmutter et al. (1998)
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Alternatives to an accelerating universe ?

= Axion dimming of supernovae
Csaki, Kaloper & Terning, PRL 88 (2002) 161302

m Dust
Aguirre, ApJ Lett 512 (1999) 19

= Note that some form of energy density (apart from the matter
density) is required to keep the universe flat.

= Future CMB data by itself will be able to verify or rule out the
acceleration of the universe!
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Dark Energy Phenomenology : Quintessence

52
“’@=i—§ i _1+VC(2Q)
T pg o« R31T®)  Quintessence is a
slowly — rolling
V s.calar field.
(‘Q ) Q% < V(Q)
- .

Clustering
olUlhe — o
Psuedo Nambu-Goldstone bosons as quintessence

Frieman, Hill, Stebbins & Waga, PRL 75 (1995) 2077
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But Seriously ... What is Dark Energy?

Observable : Function ( Expansion Rate )

3m[2)| R - bl k
= R2
GR postulates : . .
i _ _mg' 25 i 9 i 0 il
T TS S s R2

A perfectly smooth component of energy and pressure cannot be
detected in any way except for its influence on the expansion rate.

If not a cosmological constant, then dark energy must cluster.
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Trouble on the Horizon ...

Standard model of cosmology is remarkably successful, but for the
vacuum energy and dark energy problems.

Vacuum energy problem

3 22 -
Ppresent ~ Pcrit = gmleO = 10~*"GeVv*

pvac &~ My = 1070GeV* (or at least mg sy ~ TeV4) ﬁ

Dark energy problem

What sets the dark energy scale ~ p}/* ~ milli-eV?
Or equivalently, why now?

Dodelson, Kaplinghat and Stewart, So/ving the coincidence problem, PRL 85, 3335 (2000)
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Modify Gravity on Horizon Scales ?

= The possibilities ...
87_‘_p “/\H

. _|_ _
2
3mIDI R

H2_

« Self-tuning branes

Arkani-Hamed, Dimopoulos, Kaloper & Sundrum, Phys Lett B480 (2000) 193

= Leakage into extra dimensions

Dvali, Gabadadze & Shifman, hep-th/0202174

= Non-local modification of gravity

Arkani-Hamed, Dimopoulos, Dvali & Gabadadze, hep-th/0209227
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Consistency Tests: Expansion History
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Big Bang Nucleosynthesis
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H,. Expansion rate at 1 MeV {s“}
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Expansion Rate of the Universe During BBN

2 -

No General Relativity!
Minimal assumptions.

-

log[ expansion rate (™) ]

-4 L 1 |
-10.0 -95 -3.0 -85

log[ scale factor ]

Expansion rate at 200 keV
| | | | constrained to about 30%
1 2 3 4 of the standard BBN value.

o, Slope of Log(H) vs Log (T) during BBN

Carroll and Kaplinghat, PRD 65, 063507 (2002)
5/1/2003 Manoj Kaplinghat: Dark energy 19



Consistency Tests: Expansion History
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Growth of Structure and Expansion Rate

= CMB
= Distance to last scattering surface
= Sound horizon when photons last scattered
= Collisional (Silk) damping

= Large scale structure

= Growth of perturbations is hindered by a larger expansion rate since
the expansion rate acts like a friction term.
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Alternate Probes of Dark Energy

= Probe the growth of structure as well as the expansion rate.

= Why do we need to go beyond SNIa magnitude-redshift relation?
» Different systematic
= Test alternate hypothesis (like axion dimming, dust)
= Test clustering properties of dark energy

= Alternate probes:
= Weak lensing of the CMB
« Weak lensing of galaxies
= Number counts of clusters
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Gravitational Lensing

Fluctuations in the field doing the lensing~ ¥

4

¢ — j dZ g) ( Z)\P ( Z) Averaged fluctuation

along the geodesic.
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Weak Lensing and Dark Energy

Lensing breaks degeneracies in the primary CMB.

Distances to lens and source €< Expansion history
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Effect of Dark Pressure
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Effect of a Massive Neutrino
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Galaxy Lensing Tomography

=  Weak lensing distorts the shape of galaxies. This distortion is
measurable when averaged over a large number of galaxies.

= The distortion (shear) depends on the projected mass density
along the photon’s geodesic, V.

= Look at the shear of galaxies in specific redshift bins. This provides
the redshift evolution of the projected mass density, ¥, which
depends (among other things) on dark energy and neutrino mass.

= The power spectrum at early times (recombination) has to be well
constrained for the above to work.

Hu and Keeton, 2002
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Lensing of the CMB

-
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Effect of Lensing on CMB Power Spectrum
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Peak sensitivity ~ z=2
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Coherence of Lensing Deflection
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Growth of Structure: Probing Dark Energy
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Amplitude of the Primordial Power Spectrum

= To isolate the effects of dark energy at low redshifts, we must pin
down the power spectrum of the gravitational potential at high
redshifts.

= The amplitude of the power spectrum, A, is degenerate with the
optical depth to the last scattering surface. One way to break this
degeneracy is to measure the reionization signature in CMB
polarization at large angles. >

= Our ignorance of how reionization occurred adds to the
measurement uncertainty for the optical depth. However, there is
enough information in the large angle CMB polarization signal that
this will not be the limiting factor.

= Planck will be able to constrain the optical depth to about 0.005
which implies that the amplitude of the primordial power spectrum
can be constrained to about 1%.

Kaplinghat et al, Probing the reionization history of the universe using CMB polarization, Ap] (2002)
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So... What Will It Take?

Experiment Lo 5D L (GHZ) 6, Ar Ap

Planck 2000 3000 100 9.2" b5 o
143 7.1 6 11
217 5.0 13 27

SPTpol (fey = 0.1) 2000 3000 217 0.9° 12 17

CMBpol 2000 3000 217 300 1 1.4

|

This is what it will take to measure primordial tensor

perturbations down to T/S ~ 10~ _
Kaplinghat, Knox and Song, 2003
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Fundamental Physics with CMB Lensing

Detect the acceleration of the universe with CMB alone, at 5.

Measure energy scale of inflation down to about 2 x 101> GeV.

o(m,) = 0.03 eV. This should be compared to the expectation for
the sum of neutrino masses being greater than 0.06 eV.

Precision measure of the amplitude of scalar perturbations to 1%.

Tilt and its variation with scale. Vital for differentiating between
hybrid inflation models.

Map reionization history.
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Expansion Rate (1/Myrs)
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Summary : Conceptual Cosmology Bottom-Up
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